Talaromycosis: A Neglected Tropical Disease in Southeast Asia

Dr Lottie Brown MBChB BSc MSc

City St George's University of London

lottie.brown@stgeorges.nhs.uk

@DrLottieBrown

Acknowledgements

- Charles Giamberardino
- **Duke and TMRC Vietnam**

teams

NIHR National Institute for Health and Care Research

Diseases

Bach Mai hospital, Hanoi

CFAR

堵 明 物 透

THE UNIVERSITY OF HONG KONG

Diseases,

HCMC

Associate Prof Thuy Le

The Severe Fungal Disease Talaromycosis

C. Ning CROI (2020)

Ecology of Talaromycosis

The Bamboo Rat

izomys pruinosus

T. Le et al CID (2011), Bulterys, T. Le et al CID (2013), Chariyalertsak et al JID (1996)

Risk Factors for Talaromycosis in Vietnam: A case-control study

- Case-control study of individuals with advanced HIV disease across 2 major hospitals in Vietnam (n = 610), matched in a 2:1 ratio
- Data on <u>13</u> pre-defined exposure variables collected by face-to-face questionnaires
- Geographical mapping of cases and controls

Characteristics All patients Cases Controls (N = 610)(N = 205)(N = 405) 33(30 - 38)34(31 - 39)Age (years) 34(31 - 38)Sex (male) 456 (74.8%) 154 (75.1%) 302 (74.6%) CD4 (cells/µL) N = 194 N = 66N = 128 16.5 (7.0 – 36.0) 9.0(5.0 - 18.8)25.5(9.0 - 54.3)Absolute Lymphocyte N = 585N = 197 N = 388(cells/µL) 520 (300 - 750) 410(230-600)570 (380 - 810) N = 606N = 204N = 402WHO stage 3 (0.5%) 0 (0%) 3 (0.7%)* 16 (2.6%) 0 (0%) 16 (4.0%)* 146 (24.1%) 0 (0%) 146 (36.3%)* 3 4 441 (72.8%) 204 (100%) 237 (59.0%) Inpatient 573 (93.9%) 205 (100%) 368 (90.9%) 37 (6.1%) 37 (9.1%) Outpatient 0 (0%)

*All controls diagnosed with another OI

L. Brown, B. Jonat et al, in press EID (2025)

Behavioral and exposure risk factors for talaromycosis

Exposure	All	Cases	Controls	Univariate effect	Multivariate effect
Covariates	(N = 610)	(N = 205)	(N = 405)	OR (95% CI), <i>P</i> -value	OR (95% CI), <i>P</i> -value
Antiretroviral therapy	250/610	72/205	178/405	0.68 (0.47 to 0.97),	0.75 (0.50 to 1.13),
	(41.0)	(35.1)	(44.0)	<i>P</i> = 0.04	<i>P</i> = 0.17
Fluconazole	61/596	15/198	46/398	0.59 (0.31 to 1.11),	0.68 (0.35 to 1.34),
prophylaxis	(10.2)	(7.6)	(11.6)	<i>P</i> = 0.10	p =0.27
Cigarette smoking	413/610	130/205	283/405	0.65 (0.42 to 1.01),	0.71 (0.43 to 1.18),
	(67.7)	(63.4)	(69.9)	P = 0.06	<i>P</i> = 0.19
Injection drug use	232/610	71/205	161/405	0.79 (0.54 to 1.15),	0.85 (0.54 to 1.35),
	(38.0)	(34.6)	(39.8)	<i>P</i> = 0.21	<i>P</i> = 0.50
Outdoor occupation	263/610	100/205	163/405	1.47 (1.03 to 2.09),	1.23 (0.81 to 1.87),
	(43.1)	(48.8)	(40.2)	<i>P</i> = 0.04	<i>P</i> = 0.34
Soil exposure	409/610	143/205	266/405	1.22 (0.85 to 1.75),	1.06 (0.69 to 1.63),
	(67.0)	(69.8)	(65.7)	P = 0.29	P = 0.80
Natural water	285/610	90/205	195/405	0.83 (0.58 to 1.19),	0.76 (0.51 to 1.13),
exposure	(46.7)	(43.9)	(48.1)	P = 0.31	P = 0.18
Tropical plant	218/610	90/205	128/405	1.75 (1.22 to 2.56),	1.84 (1.17 to 2.90),
exposure	(35.7)	(43.9)	(31.6)	<i>P</i> = 0.002	<i>P</i> = 0.008
Highland plant	49/610	25/205	24/405	2.25 (1.24 to 4.01),	1.71 (0.86 to 3.41),
exposure	(8.0)	(12.2)	(5.9)	<i>P</i> = 0.008	P = 0.13
Bamboo rat	6/610	3/205	3/405	2.00 (0.40 to 9.91),	1.71 (0.33 to 8.87),
exposure	(1.0)	(1.5)	(0.7)	<i>P</i> = 0.40	<i>P</i> = 0.53
Farming animal exposure	93/610	40/205	53/405	1.60 (1.02 to 2.51)	2.03 (1.18 to 3.49)
	(15.2)	(19.5)	(13.1)	<i>P</i> = 0.04	<i>P</i> = 0.010
Domestic animal	170/610	57/205	113/405	1.01 (0.67 to 1.51)	1.39 (0.87 to 2.22)
Exposure	(27.9)	(27.8)	(27.9)	<i>P</i> = 0.97	<i>P</i> = 0.17
Raw animal	411/610	132/205	279/405	0.82 (0.57 to 1.18)	0.91 (0.60 to 1.37)
consumption	(67.4)	(64.4)	(68.9)	<i>P</i> = 0.28	<i>P</i> = 0.64

In our <u>multivariable analysis</u>, independent factors for talaromycosis included:

- 1. Exposure to tropical plants (rice, bamboo, sugarcane)
- 2. Exposure to farmed animals

L. Brown, B. Jonat et al, in press EID (2025)

Geographical risk factors for talaromycosis

Region	Number	Number of	Case to	OR (95% CI), <i>P</i> -value
	of cases	controls	control ratio	
Mekong	17	69	0.25	Reference category
HCMC	60	185	0.32	1.31 (0.56-3.03); <i>P</i> = 0.91
Southeast	68	78	0.87	3.42 (1.44-8.10); <i>P</i> = 0.001
South Central Coast	6	5	1.20	8.76 (1.25-61.56); <i>P</i> = 0.02
Central Highlands	24	11	2.18	11.36 (2.92-44.24); <i>P</i> < 0.0001

Patients in the highland and surrounding regions were significantly more likely to develop talaromycosis than those residing in the Mekong Delta or HCMC

 In addition, patients with <u>previous</u> <u>residence</u> or <u>travel</u> to these regions were at increased risk OR (95% CI): 3.15 (1.49 – 6.64), P = 0.003

L. Brown, B. Jonat et al, in press review EID (2025)

Figure: L. Brown, T. Le et al (2025)

Diagnostic Challenges

- Non-specific clinical features that <u>vary</u> according to host factors and <u>overlap</u> with other Ols
- Initiation of empirical therapy is <u>not recommended</u> due to broad differentials, antifungal drug duration and toxicity and drug-drug interactions

Mortality increases from 25% to 50% with late diagnosis

Hu Y. et al, Mycopathologia (2013)

Diagnostic Challenges

Symptoms onset Up to 6 months

Giemsa stain of skin smear Skin lesions absent in 50%

Late-stage infection

Culture Takes 5 – 28 days Sensitivity: 50% to 70% in blood Late-stage infection

Mortality increases from 25% to 50% with late diagnosis

Hu Y. et al, Mycopathologia (2013)

Talaromycosis Diagnostics

The Novel Diagnostic Pipeline

Figures: ¹Brown *et al* under review in CID (2025)

Mp1p antigen enzyme immunoassays (EIA)

Figure: L. Brown, T. Le et al (2025)

Mp1p EIA prospective validation in hospitalized patients with AHD

	Serum		P	Plasma	C	Urine
4 3 2 2 1 1 0	Cases Co n=77 n	• • • • • • • • • • • • • • • • • • •	4 3 2 1 0 Cases n=80	• <u>Cutoff = 0.23</u> Controls n=452	4 3 2 1 0 Cases n=74	• • • • • • • • • • • • • • • • • • •
	Serum	(n = 526)	Plasma	(n = 532)	Urine	(n = 482)
-	Tm	No Tm	Tm	No Tm	Tm	No Tm
	(n = 77)	(n = 449)	(n = 80)	(n = 452)	(n = 74)	(n = 408)
「mAg Pos	68	11	72	15	69	6
「mAg Neg	9	438	8	437	5	402
Sensitivity Specificity PPV NPV	<mark>88.3%</mark> [7 97.6% [9 86.1% [7 98.0% [9	9.0 – 94.5] 5.7 – 98.8] 6.5 – 92.8] 6.2 – 99.1]	<mark>90.0%</mark> [8 ⁷ 96.7% [94 82.8% [73 98.2% [96	1.2 – 95.6] 4.6 – 98.1] 3.2 – 90.0] 6.5 – 99.2]	93.2% [8 98.5% [9 92.0% [8 98.8% [9	34.9 – 97.8] 96.8 – 99.5] 33.4 – 97.0] 97.2 – 99.6]

Mp1p EIA performance when testing plasma and urine together

	Cases (n = 81)	Controls $(n = 452)$	Row Sum	
TmAg positive	78	15 (FP)	93	
TmAg negative	3 (FN)	437	440	
Column sum	81	452	533	
Sensitivity	96.3% (95% CI 89.6– 99.2)			
Specificity	96.7% (95% CI 94.6 – 98.1)			
Positive predictive value	83.9% (95% CI 74.8– 90.7)			
Negative predictive value	99.39	% (95% CI 98.0	- 99.9)	

Mp1p antigenemia precedes blood culture positivity by up to 16 weeks

Three point-of-care antigen tests

IMMY Mp1p LFA

4D1 LFA

Mp1p D4 POCT

IMMY/Uni HK

Sens = 91% Spec = 99% 239 cases, 160 controls

Sirida Youngchim, Chiangmai Uni.

Sens = 89% Spec = 100% 76 cases, 265 controls

Duke/Uni HK

Sens = 92% Spec = 100% 26 cases, 8 controls

Thu, Venugopalan et al (in preparation), Pruksaphon et al PLOS NTD (2021), Kinnamon et al ACS Sens (2023)

The Mp1p LFA

Figure: L. Brown, T. Le et al (2025)

Performance of **IMMY Mp1p LFA vs. Mp1p EIA** (239 talaromycosis case and 160 control patients with AHD)

EIA (95%) > LFA (91%) >> blood culture (55%)

Thu NTM and Venugopalan S (in preparation)

Triple fungal screen-and-treat strategy in advanced HIV disease

CD4 <100 or WHO stage 3 or 4 disease Screen for TmAg, HAg, CrAg

Figure: T. Le (2025)

Triple fungal and mycobacterial screening study flow

Figure 1. Study population and schema

Figure 2. Prevalence of three mycoses and mycobacterial infections in inpatients and outpatients with ADH

Note: Tm: Talaromycosis; Cn: Cryptococcosis, Hc: Histoplasmosis, TB: Tuberculosis, NTM: non-tuberculosis mycobacteria

Figure: Vu Quoc Dat et al CROI (2024)

qPCR assays

w/o fungemia

Optimization of the 5.8S qPCR assay

Achieved highest analytical sensitivity to date (1 cell per mL)

No crossreactivity with 15 clinicallyrelated species

Candida albicans Candida tropicalis Candida krusei Candida parasilopsis Aspergillus fumigatus Aspergillus terreus Aspergillus flavus Cryptococcus neoformans Histoplasma capsulatum Penicillium chrysogenum Penicillium aurantiogriseum Penicillium citrinum Penicillium crustosum Penicillium expansum Penicillium glabrum

Khanh, Ha My et al

¹Khanh, Brown *et al* Medical Mycology (2025)

Clinical evaluation of the 5.8S qPCR assay

Further optimization:

- Higher volumes of whole blood
- Smaller elution volumes
- ➤ ddPCR

¹Khanh, Brown *et al* Medical Mycology (2025)

Overall sensitivity = 88%

- In blood-culture-positive = 99%
- \circ In blood-culture-negative = 56%

Overall specificity = 97%

	5.8S qPCR	Blood culture	P value	
Blood culture-	101 (99.0%)	102 (100%)		
positive cases (n = 102)	95% CI: 94.6 – 99.9%		1.00	
Blood culture-	20 (55.6%)	-		
negative cases (n = 36)	95% CI: 38.1 - 72%			
Total cases	121 (87.7%)	102 (73.9%)	<0.01	
	95% CI: 80.7 - 92.5%	95% CI: 65.6 - 80.8%		

Diagnostic Algorithm for Talaromycosis

Figures: ¹Brown *et al* under review at CID (2025)

In vitro activity against *T. marneffei*

Fluconazole		
Itraconazole		
Voriconazole		
Posaconazole		
Isavuconazole		
Terbinafine		
5-FC		
AmB*	*Not correlated wi	ith clinical efficacy
Caspofungin		
Andulafungin		
Micafungin		
Olorofim	Potent	
Fosmanogepix	Variable	
Oteseconazole	Limited	

¹Fang et al (2021) + ²Tan et al (2022) Infect Drug Resist, ³Guo et al (2022) Chin Med J

Current Treatment Options for Talaromycosis

Le T *et al* NEJM (2017)

Partial synergy between Amphotericin B and 5FC against Tm in 60 clinical isolates

Duke Duke

Vitsupakorn S, et al. Unpublished

Full synergy between Amphotericin B and 5FC against Tm - time kill curve experiments

Vitsupakorn S, et al. Unpublished

LAmB-FAST

Liposomal Amphotericin B - Flucytosine Antifungal Strategies for Talaromycosis

antigen levels

24 weeks follow up-----

When is it safe to stop maintenance antifungal therapy?

LAmB-FAST

Liposomal Amphotericin B - Flucytosine Antifungal Strategies for Talaromycosis

Tropical Medicine Research Center for Talaromycosis at Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam Ngo Thi Hoa, PhD Nguyen Thanh Hiep, MD, PhD

Hanoi Medical University, Hanoi, Vietnam Vu Quoc Dat, MD PhD Pham Hong Nhung, MD

Oxford University Clinical Research Unit, Vietnam Rogier van Doorn, MD PhD

US/Vietnam CDC Tom Chiller, MD Alexander Jordan, MPH Dallas Smith, PharmD Bui Thu Hien, MD Nguyen Binh, MD Tran M Than, MPH

Vietnam Administration of HIV/AIDS Pham Thanh Huong, MD Do Thi Nhan, MD University of Hong Kong, Hong Kong KY Yuen, MD PhD Jasper Chan, MD PhD Jian-Piao Cai

IMMY Inc, OK, USA Konner Bloss

LAOS

Duke Biomedical engineering, NC, USA David Kinnamon, PhD Ashutosh Chilkoti, PhD

Duke University Biostatistics, NC, USA Yuliya Lokhnygina, PhD

National Hospital for Tropical Diseases, Hanoi, Vietnam Pham Ngoc Thach, MD PhD Dinh Van Trang, MD PhD

Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam Vo Trieu Ly, MD, PhD Nguyen Le Nhu Tung, MD

Bach Mai Hospital, Hanoi, Vietnam Do Duy Cuong, MD PhD

CAMBODIA

Mahidol University, Siriraj Hospital, Bangkok, Thailand, Methee Chayakulkeeree, MD PhD Tainan+

Ange

MA

NIAID

Maharat Nakhon Ratchasima Hospital, Thailand Rattagan Kajeekul, MD

Yulin*

HAINAN

Chiang Mai University, Chiang Mai, Thailand Chaiwarith Romanee, MD PhD Khuanchai Supparatpinyo, MD, PhD Sirida Youngchim, PhD

Guangzhou 8th People Hospital, Guangzhou, China Linghua Li, MD PhD

Guangxi Medical University, Nanning, China Fourth People's Hospital in Nanning First Clinical Medical College, Nanning Hao Liang, MD PhD Cao Cunwei, MD PhD Chuanyi Ning, MD PhD

Shenzhen 3rd Hospital, Shenzhen, China Fang Zhao, MD PhD Yun He, MD PhD

Nakhon Si Thammarat

Myeli

BANCKOW.

Summary, insights, research directions

Diagnosis

- qPCR and antigen assays offer excellent rapid rule in and rule out tests
- 2. Urine is an excellent sample for antigen detection
- 3. There is the potential for antigen and qPCR testing to be used to prognosticate and follow treatment response
- 4. Host-based diagnostics will expand our understanding of disease spectrum, identify people at risk for disease reactivation disease, and improve patient management

Treatment

- 1. Induction therapy:
 - LAmB-FAST trial
 - Liposomal ampho B +/- 5FC
 - Other antifungals?
- Consolidation and maintenance: STOP SHORT trial testing viral load guided strategy

Acknowledgements

- Charles Giamberardino
- **Duke and TMRC Vietnam**

teams

NIHR National Institute for Health and Care Research

Diseases

Bach Mai hospital, Hanoi

CFAR

堵 明 物 透

THE UNIVERSITY OF HONG KONG

Diseases,

HCMC

Associate Prof Thuy Le

